Signalling pathways activated by glucagon-like peptide-1 (7-36) amide in the rat heart and their role in protection against ischaemia
نویسندگان
چکیده
Glucagon-like peptide-1 is an incretin hormone proposed to have insulinomimetic effects on peripheral insulin-sensitive tissue. We examined these effects on the heart by using isolated, perfused rat hearts and adult ventricular myocytes. During normoxic perfusion, no effects of escalating concentrations of GLP-1 on either heart rate or left ventricular developed pressure were found. With functional performance as readout, we found that GLP-1 directly protected the heart against damage incurred by global low-flow ischaemia. This protection was sensitive to the presence of iodo-acetate, implicating activation of glycolysis, and was abolished by wortmannin, indicative of PI-3-kinase as mediator of protection. In addition, GLP-1 had an infarct-sparing effect when supported by the presence of the dipeptidyl peptidase-IV inhibitor valine pyrrolidide. GLP-1 could not directly activate protein kinase B (also called Akt) or the extracellular regulated kinases Erk1/2 in hearts or cardiocytes under normoxic conditions, but phosphorylation of the AMP-activated kinase (AMPK) on Thr(172) was enhanced. I n addition, the glycolytic enzyme phosphofructokinase- 2 was activated dose dependently. During reperfusion after ischaemia, modulation of the phosphorylation of PKB/Akt as well as AMPK was evident. GLP-1 therefore directly protected the heart against low-flow ischaemia by enhancing glycolysis, probably via activation of AMP kinase and by modulating the profile of activation of the survival kinase PKB/Akt.
منابع مشابه
Metabolically-inactive glucagon-like peptide-1(9–36)amide confers selective protective actions against post-myocardial infarction remodelling
BACKGROUND Glucagon-like peptide-1 (GLP-1) therapies are routinely used for glycaemic control in diabetes and their emerging cardiovascular actions have been a major recent research focus. In addition to GLP-1 receptor activation, the metabolically-inactive breakdown product, GLP-1(9-36)amide, also appears to exert notable cardiovascular effects, including protection against acute cardiac ischa...
متن کاملGlucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury.
Glucagon-like peptide 1 (GLP-1), a gut incretin hormone that stimulates insulin secretion, also activates antiapoptotic signaling pathways such as phosphoinositide 3-kinase and mitogen-activated protein kinase in pancreatic and insulinoma cells. Since these kinases have been shown to protect against myocardial injury, we hypothesized that GLP-1 could directly protect the heart against such inju...
متن کاملA functional role for central glucagon-like peptide-1 receptors in lithium chloride-induced anorexia.
The present study sought to determine whether central glucagon-like peptide-1 (GLP-1)-receptor signalling contributes to the anorexigenic effects of systemically administered lithium chloride (LiCl). Male Sprague-Dawley rats with chronic intracerebroventricular (ICV) cannulas were acclimated to a feeding schedule that included daily 30-min access to palatable mash. In the first experiment, ICV ...
متن کاملThe glucagon-like peptide-1 metabolite GLP-1-(9-36) amide reduces postprandial glycemia independently of gastric emptying and insulin secretion in humans.
Glucagon-like peptide 1 (GLP-1) lowers glycemia by modulating gastric emptying and endocrine pancreatic secretion. Rapidly after its secretion, GLP-1-(7-36) amide is degraded to the metabolite GLP-1-(9-36) amide. The effects of GLP-1-(9-36) amide in humans are less well characterized. Fourteen healthy volunteers were studied with intravenous infusion of GLP-1-(7-36) amide, GLP-1-(9-36) amide, o...
متن کاملThe role of CNS glucagon-like peptide-1 (7-36) amide receptors in mediating the visceral illness effects of lithium chloride.
Peripheral administration of large doses of lithium chloride (LiCl) to rats causes a spectrum of effects that are consistent with visceral illness. LiCl reduces food intake, decreases salt ingestion after sodium depletion, induces pica, and produces robust conditioned taste aversions. Because some of the effects of peripheral LiCl are mimicked by centrally administered glucagon-like peptide-1 (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2008